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Measuring industry co-location across county borders 

Zheng Tiana, Paul D. Gottliebb and Stephan J. Goetzc 

ABSTRACT 
The location quotient (LQ) measures regional industry concentration with the advantages of easy calculation 
and interpretation. However, it is a weak method for identifying industry clusters that consist of related 
industries geographically concentrated in contiguous counties. This paper proposes a new spatial input– 
output location quotient (SI-LQ) accounting for both the co-location of related industries and the spatial 
spillover of concentration into neighbouring counties. A bootstrap method is used to determine the cut-
off values of the new measure. The practical advantages of the SI-LQ over the traditional LQ include 
attenuation of the extreme values of the LQ in less populous and remote counties and the identification of 
large substantive clusters. The SI-LQ outperforms the LQ in a regression analysis of the effect of industry 
concentration on total employment growth. 

KEYWORDS 
location quotients, spatial input–output location quotient (SI-LQ), industry agglomeration, input–output 
linkages, spatial correlation 
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INTRODUCTION 

Industry cluster development is a widely applied strategy for regional economic development 
(Feser & Bergman, 2000; Nathan & Overman, 2013; Porter, 1998), and industry agglomeration 
is an enduring focus of regional and urban economics (Combes & Gobillon, 2015; Rosenthal & 
Strange, 2001). Both concepts emphasize the geographical concentration of interdependent 
industries, connected with supply–demand chains, taking advantage of input sharing, knowledge 
spillovers and labour market pooling (Cainelli & Iacobucci, 2016; Ellison, Glaeser, & Kerr, 2010; 
Helsley & Strange, 2014). Industry agglomeration in a region may also have spatial spillover 
effects on neighbouring regions (Greenstone, Hornbeck, & Moretti, 2008), forming a large 
area, such as Silicon Valley, which consists of several counties in the Bay Area of California. 
The objective of this paper is to construct a measure of industry agglomeration that takes into 
account co-location of related industries across adjacent regions, defined here as US counties. 
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In the literature, various agglomeration measures have been proposed. Based on the type of 
spatial data, existing measures can be categorized into the discrete and continuous types. With 
areal unit data, such as states, counties or other administrative units, discrete measures include 
the Gini index, the Theil index and the Ellison–Glaeser index (Ellison & Glaeser, 1997). 
With spatial point data, and focusing on economic activities in continuous space, continuous 
measures include the Duranton–Overman index (Duranton & Overman, 2005) and variations 
of Ripley’s K-function (Arbia, Espa, Giuliani, & Mazzitelli, 2010; Marcon & Puech, 2003).1 

However, both types of measures have limitations. The discrete measures lose the spatial dimen-
sion after summing up the shares of industries over all regions. They also fail to account for indus-
try agglomeration across administrative borders, which is a manifestation of the modifiable areal 
unit problem (MAUP). The continuous measures require very detailed data on location (often the 
coordinates) of firms in a region. The high data requirement makes the continuous measures 
uncommon in practice for regional development practitioners. 

This paper focuses on the location quotient (LQ), a commonly used measure of local industry 
concentration (Cromley & Hanink, 2012; Delgado, Porter, & Stern, 2016; Fracasso & Marzetti, 
2018; Glaeser, Kallal, Scheinkman, & Shleifer, 1992). It is a discrete type measure but preserves 
both industry and spatial dimensions. In the literature, the LQ is used to denote several related 
concepts, including specialization (Mulligan & Schmidt, 2005), spatial concentration (or cluster-
ing) (Billings & Johnson, 2012), and industry agglomeration (O’Donoghue & Gleave, 2004). 
Although these concepts have often been used as synonyms, distinctions between them are impor-
tant (Aiginger & Rossi-Hansberg, 2006; Brülhart, 1998). Specialization occurs when a region’s 
industry structure is dominated by a single industry, whether or not the industry is large in an 
absolute sense. Spatial concentration occurs when one or a few regions have a large share of an 
industry’s national employment. Unless an industry at the national level is very small, spatial con-
centration in a region normally implies an employment count that is large in absolute terms. 
Finally, agglomeration emphasizes a substantial presence of several related industries in spatial 
proximity that enjoy both scale and transactional economies.2 

Consider now the extent to which the traditional LQ measures any or all of these concepts. 
Mathematically, the LQ has two alternative forms and related interpretations. It can be inter-
preted as measuring either relative specialization or relative spatial concentration, depending on 
how the terms in the numerator and denominator are arranged. A frequently-observed issue 
with the LQ’s relative approach to industries is that small, highly specialized counties emerge 
with high LQs but very small employment counts (Carroll, Reid, & Smith, 2008). Such places 
would normally be rejected if the LQ were being used as an indicator of agglomeration. The 
LQ’s bias toward specialization without regard to size also leads to a statistical problem: the dis-
tribution of LQs across counties will be highly skewed, with outliers that need to be dealt with, for 
example, in the context of regression. 

A second issue with the LQ based on individual county data is that high-LQ counties may be 
physically isolated. This occurs because the measure does not account for industry shares in neigh-
bouring spatial units. This is a manifestation of the MAUP for areal unit data: the regions are units 
of statistical convenience and not true economic regions. 

Finally, the traditional LQ based on national industry statistics does not usually include key 
information on related industries. This is essential if one wishes to capture not only the concepts 
of specialization and spatial concentration but the broader concept of agglomeration as well. 

Recent studies have endeavoured to improve the LQ by including new elements. Of special 
interest in the present context are those that calculate LQs using groups of industries connected 
via input–output (I-O) relationships or other characteristics such as specialized labour skills (Del-
gado et al., 2016). The main approach to embedding I-O relationships is to use national-level I-O 
tables to create a set of essentially aspatial industry clusters composed of North American Industry 
Classification System (NAICS)-coded industries. This technique was pioneered by Edward Feser 
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(Feser & Bergman, 2000; Feser, Renski, & Goldstein, 2008). Researchers who use such national 
cluster definitions for LQ analyses typically select counties, metropolitan statistical areas (MSAs) 
or other administrative units of convenience, rather than allowing groups of adjacent counties to be 
identified by the data (Slaper, Harmon, & Rubin, 2018). 

In contrast, studies concerned with the ‘county proximity problem’ have used individual 
NAICS-coded industries to test their measures of spatial association. These measures are not, 
strictly speaking, always LQs. Gibbs and Bernat (1997) and Goetz, Shields, and Wang (2009) 
use a local Moran’s I statistic to identify multi-county groupings of establishments in various 
NAICS-coded industries. (The second of these studies also uses LQs and I-O data, but never 
in combination.) Carroll et al. (2008) compare the Getis–Ord correlation statistic with LQs esti-
mated on individual counties. Cromley and Hanink (2012) address the county proximity problem 
for LQs by proposing a ‘focal LQ’ or FLQ, which uses spatially weighted county-level data. It is 
similar to one component of our own composite measure. The FLQ was used in applications of 
public health data and employment data for two sectors, with counties in North Carolina as the 
study areas. 

Leslie and Kronenfeld (2011) and Cromley, Hanink, and Bentley (2014) develop the co-
location quotient (CLQ) for categorical spatial point data. The CLQ is defined as the ratio of 
the probability of one category locating near to another category in a given location relative to 
the probability that the two categories co-locate globally. While Leslie and Kronenfeld (2011) 
examine the co-location of industries in Phoenix, they do not use I-O relationships to select 
pairs of industries that they would expect to locate together. 

In the context of a literature on an enhanced LQ index that remains young and somewhat dis-
connected, our motivation to modify the LQ is to make it a measure of regional agglomeration 
that incorporates both industry relatedness and spatial proximity. We show that modifying the 
LQ to include proximate counties–which is justified by our knowledge of the size of labour mar-
kets and economic regions, and modifying the LQ to include industries related through a common 
supply chain–which is justified by industry cluster theory (Porter, 1998), solve the problems of 
small isolated counties and extreme values that are associated with the traditional LQ. Finally, 
we use the new measure in a regression analysis of employment growth to test its validity in 
terms of common industry cluster predictions. 

COMPUTING THE NEW MEASURE 

The proposed new measure is based on the traditional LQ. For industry i = 1, . . . , M and county 
j = 1, . . . , N , the LQ is defined as: 

xij xin
LQij = / (1)

xj xn 

where xij is industry i’s employment in county j; xj is the total employment in county j; and xin and 
xn are the national counterparts.

3 LQij reflects how industry i is specialized in county j relative to 
its national level. The new measure to be introduced extends the LQ with three variants to account 
for industry relatedness and spatial spillovers. 

Measuring co-location of related industries in a county 
The concentration of a single industry i may induce related industries to co-locate. The relatedness 
of industries can be represented by the coefficients in an I-O matrix. To measure the concentration 
of co-located industries, a weighted average of the LQs for industries related to industry i in 
county j can be used, with the weights being the I-O coefficients. Let 
yj = (LQ1j , LQ2j , . . . , LQMj ) 

′ be the M × 1 vector of LQs in county j and A an M × M I-O 
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coefficient matrix (i.e., the direct requirement matrix). Each row in A, say 
ai = (ai1, ai2, . . . , aiM ) 

′ , represents the demand for industry i’s products as intermediate inputs 
to other industries. The inner product a ′ iyj is a weighted average of the LQs for all industries 
related to i, denoted as ALQij . The ALQ for all M industries in county j can be calculated simply 
as Ayj . 

However, using A to calculate the measure of co-location has two problems. First, when the 
diagonal element of A, aii, is non-zero, a high LQij will produce a high ALQij because of aiiLQij . 
Although an industry often has large intra-industry purchases, our purpose is to have a measure of 
co-location of related industries other than of its own industry. Also, it is not desirable to double 
count LQij when combining ALQij with LQij in the final composite measure. Therefore, in cal-
culating ALQij , the diagonal elements in A are set to zero and each row is standardized by dividing 
all the elements by the row sum. 

The second problem with A is zero elements. On the one hand, zeros may be a desired feature 
in computing ALQij because the LQs of unrelated industries with industry i are excluded. On the 
other hand, the products of industry i may be inputs for industry k, the products of which are in 
turn inputs for industry l . Zero elements in A cannot reflect this second-round relatedness among 
industries, but the elements in A2 can (Miller & Blair, 2009). Moreover, artificially setting all 
diagonal elements of A to zero eliminates the intra-industry I-O relationship, which is important 
for some industries.4 But the intra-industry relationship can be preserved in A2 that is computed 
before making its diagonal zero. Therefore, for the purpose of including the multi-stage I-O 
relationships and maintaining a sufficient number of zeros to exclude unrelated industries, a com-
posite I-O matrix, A + A2, is used in computing ALQij . The composite matrix is then modified to 
have zero diagonal elements and standardized rows. As an example, the 2015 I-O matrix, except 
for the diagonal elements, has 460 zeros out of 4970 elements, and this number in the composite 
matrix becomes 94. 

Measuring co-location across county borders 
Industry clusters may spread across county borders, leading to spatial association of concentration. 
The strength of industry i’s concentration in a county will be reinforced if the same industry and its 
related industries concentrate in surrounding counties. A straightforward way to account for such 
spatial concentration is to compute spatial lags of the LQ and ALQ measures, which are the 
weighted average of these variables in neighbouring counties, with the weights defined in a spatial 
weight matrix (LeSage & Pace, 2009). Suppose W is an N × N spatial weight matrix with zero 
diagonal elements and standardized rows. We use the queen-type contiguity to define neighbours. 
Let yi and ỹi be the N × 1 vectors of LQij and ALQij for industry i in all counties. The spatial lags 
of the LQ and ALQ are Wyi and Wỹi, denoted as WLQij and WALQij , respectively. Spatial lags 
that reflect spatial spillover effects were also used in Cromley and Hanink (2012). Instead of com-
puting the spatial lags of the LQ directly, they apply the spatial weight matrix to county-level 
employment, that is, xij and xj in equation (1), and compute the FLQ with spatially weighted 
data. 

Incorporating industry relatedness and spatial spillovers 
We compute three variants of the LQ: (1) ALQij for industry i’s related industries in county j; 
(2) WLQij for industry i’s concentration in neighbouring counties to form a large spatial concen-
tration; and (3) WALQij for industry i’s related industry in neighbouring counties. While these 
variants can individually represent a facet of industry agglomeration, we need a composite measure 
that takes into account both industry relatedness and spatial association. 

Based on the 10-step guide of computing composite indicators of the Organisation for Econ-
omic Co-operation and Development (OECD) (2008), we compute the spatial input–output 
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location quotient (SI-LQ), as the geometric average of all LQ variants, that is: 

SI − LQij = [LQij (ALQij + j)(WLQij + j)(WALQij + j)]1/4 (2) 

where j is a small positive number to prevent the product from being zero if LQij is non-zero. 
However, we allow SI − LQij = 0 if  LQij = 0, keeping the two measures consistent in cases 
where industry i does not exist in county j.5 Computing the SI-LQ as a geometric average effec-
tively attenuates an extremely high LQ in a remote and small county with a simple industry struc-
ture. The ALQ, WLQ, and WALQ measures would all be relatively low in such a situation, 
resulting in a low SI-LQ. However, the SI-LQ would be high if all of its components were sub-
stantially high. 

There are some caveats with the SI-LQ. First, the SI-LQ computed here defines industry 
relatedness in terms of the I-O linkages, omitting other important factors, such as worker skills 
or technology (Delgado et al., 2016), that connect industries. The I-O matrix in the ALQ can 
be replaced by any matrix quantifying other types of industry relatedness. That we use the I-O 
matrix to link various industries is based on the existing literature. The literature on the intermedi-
ate demand variables (IDVs) uses I-O matrices to compute IDVs for inter-industry dependence 
(Moghadam & Ballard, 1988; Rey & Jackson, 1999). The literature on integrated I-O and econo-
metric models (Rey, 2000) advocates the use of both I-O matrices and spatial weight matrices to 
account for the inter-industry and spatial dependence in multiregional contexts. Second, we use 
the national I-O tables simply because they are readily obtained. At the regional level, local I-
O tables can be used, but constructing such tables is beyond the scope of our work. Third, the 
choice of exponents in equation (2) raises the issue of parameterization, but it also provides flexi-
bility. While the four components are given equal weights (exponents), users can assign each com-
ponent a different weight to reflect their judgment of importance. (This option is discussed further 
in the sixth section.) Finally, while the construction of the SI-LQ lacks a theoretical foundation, 
such as the dartboard framework in Ellison and Glaeser (1997) and Guimarães, Figueiredo, and 
Woodward (2009), our main concern is practical applications of the SI-LQ for identifying indus-
try agglomeration. We evaluate our new metric largely on its performance, and not on its adher-
ence to statistical or behavioural theory. 

DETERMINING CUT-OFF VALUES OF THE SI-LQ 

While LQij . 1 indicates industry i is concentrated in county j, various arbitrary cut-off values of 
the LQ have been used in previous studies, ranging from 1 to 5 (Crawley, Beynon, & Munday, 
2013). To avoid arbitrary cut-offs, recent studies have attempted to construct confidence intervals 
(Moineddin, Beyene, & Boyle, 2003), derive test statistics based on the Ellison–Glaeser dartboard 
framework (Ellison & Glaeser, 1997; Guimarães et al., 2009), and model the LQ with the Poisson 
and binomial probabilistic processes (Billings & Johnson, 2012). Although it is desirable to apply 
these new methods in this paper, the non-linear computation of the SI-LQ makes a direct appli-
cation difficult. Also, these new methods impose strong assumptions on the LQ, which may not 
hold for the SI-LQ. 

To circumvent these difficulties, we employ a parametric bootstrap method to determine cut-
off values for the SI-LQ. Assuming that the standardized LQ (SLQ, i.e., the z-scores of LQ) fol-
lows the standard normal distribution, O’Donoghue and Gleave (2004) use 1.63 and 1.96, the 
90% and 95% critical values, as cut-off values for the SLQ. However, because the assumption 
of the normal distribution is not satisfied for many industries, the applicability of this method 
is limited. Tian (2013) follows the SLQ method but uses a simple non-parametric bootstrap 
method to simulate cut-off values of the SLQ from their empirical distributions. While the simple 
bootstrap method works well for independent samples, it becomes unreliable for temporally or 
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spatially correlated data. The SI-LQ must be subject to spatial correlation because its computation 
involves spatial lags. Several bootstrap methods are available for spatially correlated data, including 
block bootstrap, wild bootstrap, pairs bootstrap, and parametric bootstrap (Klarl, 2014; Plant, 
2012). We choose a parametric bootstrap method following Burridge and Fingleton (2010) 
and Plant (2012). 

The parametric bootstrap method consists of the following procedure: 

(1) Estimate a spatial error model (SEM). For each industry, let an N × 1 vector y represent the 
SI-LQ of the industry; then the SEM is: 

y = a1 + u, u = rWu + e, e NID(0, s 2I) 

where a is a constant; 1 is a vector of ones; u is a residual vector assumed to be spatially correlated, 
with a spatial autoregressive coefficient r and a spatial weight matrix W; and e is the disturbance 
vector assumed to be independent and identically distributed. It follows that y can be generated by: 

y = a1 + (I − rW)−1 e. (3) 

(2) On obtaining r̂, â and ê, resample the residuals ê with replacement, that is, bootstrapping. 
We assume that the counties with non-zero SI-LQs and those with zero SI-LQs are hetero-
geneous in the error terms. Thus, the residuals belonging to the two groups are resampled 
separately. 

(3) Compute the fitted values of the SI-LQ with the bootstrapped residuals according to equation 
(3). For each industry, 999 sets of bootstrapped residuals and fitted values are obtained. 

(4) Compute the averages of the 90th and 95th percentiles from the bootstrapped SI-LQ as the 
estimates of the true 90% and 95% critical values of the population distribution, which are the 
cut-off values to detect industry agglomeration. 

DATA SOURCE 

We have two data sources for county-level industry employment. Except for Farm (NAICS 111 
and 112) and Public administration (NAICS 92), we use the data from the County Business Pat-
terns (CBP) provided by the W.E. Upjohn Institute to compute LQs. Based on the original CBP 
of the US Census Bureau, in which many county-level industry employment records are sup-
pressed due to privacy protection, the data set from the institute uses the imputation method pro-
posed by Isserman and Westervelt (2006) to estimate missing records. For Farm and Public 
administration, we use county-level employment data from the Regional Economic Accounts 
of the Bureau of Economic Analysis (BEA). The LQs for these two sectors are computed with 
the BEA data and then merged with the LQs computed from the CBP data for other industries. 

Merging the CBP and BEA data also requires addressing the problem of independent cities in 
Virginia. Since the BEA uses the combined areas for independent cities and their counties, the 
county-level employment data in the corresponding spatial units from the CBP are aggregated 
according to the BEA’s region definitions. Finally, we obtain the data set of LQs for 71 industries, 
of which most have three-digit NAICS, and four have two-digit NAICS (all NAICS and industry 
names are listed in Table 2).6 The number of counties ranges from 3077 to 3080 due to the change 
in FIPS and missing records for a few counties from 1998 to 2015. 

The aggregated I-O matrix is calculated with the use, make and final demand matrices from 
1998 to 2015, obtained from the Employment Projections (EP) programme of the Bureau of 
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Labor Statistics. The original use and make matrices have 200 industries that are aggregated to the 
desired industry classification, and then the direct requirement matrix (i.e., the matrix A) is com-
puted based on the instruction provided by the BEA (Horowitz & Planting, 2009), resulting in 
matrices with 71 industries in each year.7 

The spatial weight matrix is generated with the generalized (1:500,000) counties shapefile 
from the TIGER products of the US Census Bureau, downloaded and converted to spatial poly-
gon objects with the tigris package of R. The spatial polygons for independent cities are merged 
with counties. The spatial weight matrix is then computed as a queen-type contiguity-based 
matrix with row-standardization.8 

RESULTS OF COMPUTING THE NEW MEASURE 

Descriptive analyses 
We computed the LQ, ALQ, WLQ, WALQ and SI-LQ measures for all the counties in the 48 
continental states in the United States from 1998 to 2015. Table 1 shows all the descriptive statistics, 
computed by pooling all industries and using the observations that have non-zero SI-LQs in 2015. 
An improvement of the SI-LQ over the LQ is that the distribution of the former is more centred on 
the mean with a narrower range. While the minimums are close to zero for both the LQ and SI-LQ, 
the maximum SI-LQ is much smaller. This is the effect of geometric averaging over four measures 
so that the extreme values in LQs are controlled. As a result, the skewness of the SI-LQ is only one-
third of the LQ. For each industry, we have similar attenuation in maximums and skewness, with 
the average ratio of the skewness between the SI-LQ and LQ being only 29%.9 

A direct check of the outcome of the SI-LQ alleviating the extreme-value problem of the LQ 
is to compare the location of industries with maximum LQs and SI-LQs. The improvement in 
this aspect is noticeable, as presented in Table 2 and Figure 1, which show the locations and maxi-
mums of the LQ and SI-LQ that are averaged with the five-year data from 2011 to 2015. In the 
LQ column in Table 2, New York County, NY, does not show up for any industry, despite its 
prominence as a cluster of a variety of industries. With the SI-LQ, it has the highest concentration 
in Broadcasting (NAICS 515). Similar cases include Los Angeles County, CA, for Motion pic-
ture and sound recording (NAICS 512) and San Francisco County, CA, for Other information 
services (NAICS 519). Although some small counties still have the maximum SI-LQs, the aver-
age population size of counties with maximum SI-LQs is 212,374, much higher than 23,421 
based on the maximum LQs. In Figure 1, many isolated counties that have maximum LQs do 
not show up on the map of maximum SI-LQs. For example, the map for the SI-LQ shows 
that most manufacturing industries still concentrate in the region spanning from the Rust Belt 
region down to Alabama, rather than being sporadically distributed in less populated counties 
in the northern Great Plains region, as indicated by the maximum LQs. 

We can map each industry’s spatial concentration using categorized SI-LQs arising from the 
bootstrapped percentiles. Based on the 25th–95th percentiles (see Table S5 in the supplemental 
data online), we categorize the SI-LQ into six groups, and define the 95–100% group to be the 
most concentrated regions and the 90–95% group to be highly concentrated regions. Consider 
Transportation equipment manufacturing (NAICS 336) as an example. For comparison, we 
also compute the bootstrapped percentiles for the LQ and categorize it. Panels (a) and (b) in 
Figure 2 compare the spatial distribution of the LQ and SI-LQ for NAICS 336 in 2010, respect-
ively. An obvious difference is that with the SI-LQ, the counties in Michigan, Ohio and Indiana 
form a large area with a very high level of concentration, and this industry also concentrates in the 
southern states, including Kentucky, Tennessee, Alabama and South Carolina. In contrast, with 
the LQ, many counties identified as the most concentrated are relatively isolated, especially in the 
Midwest region, including the states from North Dakota and Minnesota down to Texas and 
Louisiana. Panel (c) shows the change of the concentration level from 2005 to 2015 based on 
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Table 1. Summary statistics of the spatial input–output location quotient (SI-LQ) and its components for all industries. 
Quantile 

Total observations Non-zero observations Mean SD Skewness Minimum Maximum 25% 50% 75% 90% 95% 

SI-LQ 218,609 151,170 1.09 1.26 8.86 0.00 55.57 0.58 0.86 1.16 1.77 2.69 

LQ 218,609 151,170 2.19 9.63 26.99 0.00 810.64 0.33 0.79 1.48 3.37 6.84 

ALQ 218,609 218,609 1.22 2.22 30.97 0.04 257.41 0.66 0.86 1.19 1.91 2.81 

WLQ 218,609 202,167 1.62 4.60 14.41 0.00 257.44 0.33 0.77 1.39 2.84 5.24 

WALQ 218,609 218,396 1.21 1.30 13.29 0.11 65.85 0.76 0.93 1.25 1.88 2.57 

Note: The table is based on computation results in 2015. Statistics are computed across all industries. The number of counties is 3079; the number of industries is 71. 
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Table 2. Maximum LQs and SI-LQs averaged from 2011 to 2015. 
Counties with maximum LQs Counties with maximum SI-LQs 

Maximum Maximum 
NAICS Industry Counties LQs Population Counties SI-LQs Population 

111–112 Crop and animal production Sioux County, NE 38.73 1313 Sherman County, TX 11.06 3028 

113 Forestry and logging Echols County, GA 678.18 4030 Randolph County, GA 49.18 7671 

114 Fishing, hunting and trapping Patrick County, VA 737.59 18,479 St. Bernard Parish, LA 9.66 36,813 

115 Support activities for agriculture and forestry Owyhee County, ID 361.74 11,473 Motley County, TX 12.53 1206 

211 Oil and gas extraction Kent County, TX 309.13 809 Winkler County, TX 19.43 7079 

212 Mining (except oil and gas) Eureka County, NV 488.45 1993 Mercer County, ND 21.16 8426 

213 Support activities for mining Slope County, ND 158.41 728 Upton County, TX 17.34 3344 

221 Utilities Surry County, VA 124.92 7060 Mercer County, ND 20.33 8426 

23 Construction Clay County, GA 10.09 3161 Live Oak County, TX 3.58 11,547 

311 Food manufacturing Jerauld County, SD 51.84 2085 Parmer County, TX 10.21 10,274 

312 Beverage and tobacco product manufacturing Moore County, TN 347.74 6340 Anderson County, KY 6.52 21,448 

313–314 Textile mills and textile product mills Murray County, GA 255.77 39,541 Chattooga County, GA 16.34 25,956 

315–316 Apparel, leather and allied product manufacturing Shannon County, MO 146.77 8446 Cherokee County, AL 14.34 25,977 

321 Wood product manufacturing Webster County, GA 141.93 2777 Cleveland County, AR 31.91 8686 

322 Paper manufacturing Little River County, AR 129.19 13,137 Choctaw County, AL 12.98 13,840 

323 Printing and related support activities Linn County, MO 50.19 12,745 Crawford County, MO 4.00 24,617 

324 Petroleum and coal products manufacturing Crawford County, IL 126.67 19,810 Hutchinson County, TX 35.60 22,203 

325 Chemical manufacturing Esmeralda County, NV 60.61 782 St. James Parish, LA 7.41 22,006 

326 Plastics and rubber products manufacturing Bracken County, KY 64.84 8503 Pleasants County, WV 7.69 7583 

327 Non-metallic mineral product manufacturing Hancock County, GA 82.40 9419 Pershing County, NV 12.49 6744 

331 Primary metal manufacturing Hancock County, KY 157.46 8551 Monroe County, OH 10.28 14,579 
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Table 2. Continued. 
Counties with maximum LQs Counties with maximum SI-LQs 

Maximum Maximum 
NAICS Industry Counties LQs Population Counties SI-LQs Population 

332 Fabricated metal product manufacturing Cameron County, PA 39.12 5074 Hancock County, KY 6.29 8551 

333 Machinery manufacturing Sargent County, ND 78.71 3804 Shelby County, OH 5.52 49,311 

334 Computer and electronic product manufacturing Deuel County, SD 53.09 4349 Henry County, KY 4.65 15,380 

335 Electrical equipment, appliance, and component Bland County, VA 116.41 6811 Fountain County, IN 7.03 17,272 

manufacturing 

336 Transportation equipment manufacturing Edwards County, IL 46.03 6728 Perry County, IN 6.15 19,415 

337 Furniture and related product manufacturing Pontotoc County, MS 188.30 30,043 Chickasaw County, MS 14.51 17,413 

339 Miscellaneous manufacturing Jackson County, KY 62.73 13,497 Kosciusko County, IN 5.50 77,336 

42 Wholesale trade Brown County, IL 10.71 6913 St. Charles Parish, LA 1.66 52,844 

441 Motor vehicle and parts dealers Sully County, SD 8.92 1380 Pulaski County, IN 1.74 13,357 

442–454 All other retail McPherson County, NE 7.73 536 Dare County, NC 1.81 33,986 

445 Food and beverage stores Craig County, VA 9.12 5175 Petroleum County, MT 2.29 493 

452 General merchandise stores Hickman County, KY 6.41 4868 Chattooga County, GA 2.45 25,956 

481 Air transportation Rappahannock County, 36.98 7500 Cameron Parish, LA 4.74 6901 

VA 

483 Water transportation Lafourche Parish, LA 221.77 96,686 St. Bernard Parish, LA 22.08 36,813 

484 Truck transportation Benton County, MS 32.38 8696 Roberts County, TX 10.62 924 

485 Transit and ground passenger transportation Perry County, PA 37.38 45,999 Warren County, PA 3.93 41,755 

486 Pipeline transportation McMullen County, TX 355.72 713 Reagan County, TX 24.82 3348 

487–488 Scenic and sightseeing transportation and support Dale County, AL 55.23 50,360 St. James Parish, LA 6.85 22,006 

activities 

492 Couriers and messengers Jackson County, OK 24.83 26,467 St. Charles Parish, LA 2.29 52,844 

493 Warehousing and storage Lucas County, IA 56.03 8891 Union County, SC 3.01 28,905 
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511 Publishing industries (except internet) Mississippi County, AR 26.93 46,390 Lauderdale County, TN 2.61 27,742 

512 Motion picture and sound recording industries Morton County, KS 23.89 3237 Los Angeles County, CA 1.81 9,825,473 

515 Broadcasting (except internet) Kearney County, NE 14.87 6484 New York County, NY 1.82 1,588,530 

517 Telecommunications Daniels County, MT 33.37 1745 Jackson County, TN 1.78 11,596 

518 Data processing, hosting, and related services Wheatland County, MT 43.04 2160 Laurel County, KY 2.90 58,990 

519 Other information services Pendleton County, KY 16.53 14,902 San Francisco County, 4.03 805,766 

CA 

521–522 Monetary authorities, credit intermediation, and related Banner County, NE 18.97 696 Goochland County, VA 1.80 21,741 

activities 

523–525 Securities, commodity contracts, fund, trusts and other Hudson County, NJ 12.25 636,254 Hudson County, NJ 2.71 636,254 

related activities 

524 Insurance carriers and related activities McLean County, IL 13.59 169,857 Dallas County, IA 1.65 66,699 

531 Real estate Currituck County, NC 9.29 23,661 Currituck County, NC 2.26 23,661 

532 Rental and leasing services Jim Hogg County, TX 22.47 5286 Cameron Parish, LA 3.44 6901 

533 Lessors of non-financial intangible assets (except Refugio County, TX 66.08 7360 Oconee County, GA 2.04 32,929 

copyrighted works) 

541 Professional, scientific, and technical services Los Alamos County, 10.38 18,012 Arlington County, VA 1.94 209,449 

NM 

55 Management of companies and enterprises Goochland County, VA 8.50 21,741 Somerset County, NJ 1.84 324,158 

561 Administrative and support services Crowley County, CO 6.39 5852 Chattahoochee County, 1.45 11,178 

GA 

562 Waste management and remediation services Butte County, ID 159.84 2907 St. Bernard Parish, LA 4.28 36,813 

611 Educational services Arthur County, NE 20.95 464 Warren County, MS 2.02 48,816 

621 Ambulatory health care services Delta County, TX 10.94 5238 Franklin County, TX 1.51 10,597 

622 Hospitals Fall River County, SD 10.57 7111 Greeley County, KS 2.13 1259 

M
easuring

 industry co-location
 across county borders 

11

SPA
TIA

L ECO
N
O
M
IC

 A
N
A
LYSIS 

(Continued ) 



Table 2. Continued. 
Counties with maximum LQs Counties with maximum SI-LQs 

Maximum Maximum 
NAICS Industry Counties LQs Population Counties SI-LQs Population 

623 Nursing and residential care facilities Oldham County, TX 21.25 2051 Robertson County, KY 2.66 2273 

624 Social assistance Starr County, TX 15.66 61,170 Reynolds County, MO 2.28 6679 

711 Performing arts, spectator sports, and related industries Hancock County, WV 20.13 30,659 Washington County, PA 1.72 207,900 

712 Museums, historical sites, and similar institutions Hamilton County, NY 48.91 4834 Charles City County, VA 3.49 7271 

713 Amusement, gambling, and recreation industries Love County, OK 45.89 9430 Clear Creek County, CO 4.55 9081 

721 Accommodation Tunica County, MS 47.12 10,748 Bath County, VA 3.56 4713 

722 Food services and drinking places Banks County, GA 3.19 18,408 Northampton County, 2.72 12,388 

VA 

811 Repair and maintenance Kenedy County, TX 52.49 415 Hancock County, IA 2.42 11,307 

812 Personal and laundry services Brooks County, GA 8.21 16,263 Dare County, NC 1.64 33,986 

813 Religious, grant-making, civic, professional, and similar Todd County, SD 12.50 9644 Arlington County, VA 2.14 209,449 

organizations 

92 Public administration Menominee County, 6.74 4265 Gilmer County, WV 3.26 8724 

WI 
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Note: LQs and SI-LQs are authors’ calculation. Data on the county-level population in 2015 are from the US Census Bureau. 
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Figure 1. Distribution of maximum location quotients (LQs) and spatial input–output location quoti-
ents (SI-LQs). 
Note: Authors’ calculation. Geographical data are downloaded with the tigris package in R, which are 
the same for the following maps. The log-transformed values are shown. 

the SI-LQ. The counties in the darker colour are where the SI-LQ increases to a higher quantile 
group from 2005 to 2015, and vice versa. We can observe a sharp contrast between the Rust Belt 
region, such as Indiana, and the southern region, such as Alabama, which has been a preferred 
location for foreign direct investment in this industry.10 

Regression analysis 
We use a regression application to compare the performance of the SI-LQ and the LQ when they 
are used as regressors. We continue to use Transportation equipment manufacturing (NAICS 
336) as an example to examine the effect of industry agglomeration on total employment 
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Figure 2. Spatial distribution of the concentration of transportation equipment manufacturing. 
Note: Authors’ calculation. The LQ and SI-LQ are grouped with the bootstrapped quantiles. The rise and 
decline in (c) represents the up and down in the quantile group by at least one group. 

growth.11 This industry depends heavily on I-O linkages, and large plants often locate in nearby 
counties to produce different parts and types of transportation equipment. Therefore, this industry 
is a case where it appears necessary to consider both inter-industry and inter-regional aspects of 
concentration when exploring outcomes related to economic vitality. 

The regression model is a spatial panel model with county fixed effects.12 The dependent vari-
able is the growth rate of total wage employment for two time periods, 2005–10 and 2010–15, 
which are roughly before and after the trough of the Great Recession. Transportation equipment 
manufacturing in the United States was severely hit by the Great Recession. The areas where this 
industry was concentrated before the recession experienced substantial job losses during the down-
turn. In the recovery period, we would expect industry concentration to be an asset, with faster 
employment growth in high concentration counties. Therefore, we expect a positive coefficient 
on either the LQ or SI-LQ if they can correctly capture industry concentration. However, 
since the SI-LQ takes into account the concentration of related industries and spatial concen-
tration in nearby counties, we hypothesize that the coefficient on SI-LQ will be higher than 
that of the LQ. Moreover, the problem of extreme LQs in remote areas without substantive con-
centration could further dampen the positive effect of the LQ on employment growth. 

According to Elhorst (2014), a spatial panel model with county fixed effects can be specified as: 

n �
= l wijy jt + xit b + mi + 1it , 1it � N (0, s 2) (4)yit 

j=1 

where yit represent the total wage employment growth rate of county i at time t, 
t = {2005 − 2010, 2010 − 2015}; l is the spatial autoregressive coefficient; and wij is the (i, j) 
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element in a spatial weight matrix W, which is the same queen-type contiguity matrix used in 
computing the WLQ and WALQ. To maintain model parsimony, we use mi to account for all 
time-invariant county-specific variables, and include two regressors in xit . The main regressor is 
the categorized LQ or SI-LQ that takes on integer values from 1 to 6, representing from the 
least to the most concentrated counties based on the bootstrapped percentiles. The main reason 
for using the categorical variables is to avoid the leverage effect from the extreme value of the 
LQ.13 To mitigate potential endogeneity, the LQ and SI-LQ variables take the values at the 
beginning years of the two time periods, that is, 2005 and 2010. The other regressor in the 
model is the level of total wage employment in 2005 and 2010, to account for the initial size of 
local labour markets and to test for convergence across counties. The data on total wage employ-
ment are from the BEA. 

The results are consistent with our expectation. Table 3 shows the estimated coefficients of the 
spatial panel models and the direct, indirect and total effects of regressors, which are defined 
according to LeSage and Pace (2009) to quantify the effect of a regressor on the dependent vari-
able in local spatial units, neighbouring units and their sum, respectively. The contrast of the coef-
ficients on the LQ and SI-LQ is straightforward. Using the SI-LQ, the effect of the concentration 
of Transportation equipment manufacturing on total wage employment growth is positive and 
statistically significant, but using the LQ, this effect is negative and insignificant.14 The estimated 
models indicate a strong spatial spillover effect of total wage employment growth, with a positive 
and significant spatial autoregressive coefficient. They also suggest convergence in employment 
across the U.S. counties before and after the period of the recession, with a negative and significant 
coefficient on the initial level of total employment. 

Table 3. Employment regressions with the LQ and SI-LQ for NAICS 336 as regressors. 
Regressors Model with LQ Model with SI-LQ 

Coefficients LQ quantile groups −0.174 (0.272) 

SI-LQ quantile groups 1.124 (0.325)*** 

Initial level of wage employment −0.257 (0.017)*** −0.257 (0.017)*** 

Direct effect LQ quantile groups −0.180 (0.270) 

SI-LQ quantile groups 1.159 (0.345)*** 

Initial level of wage employment −0.265 (0.018)*** −0.265 (0.018)*** 

Indirect effect LQ quantile groups −0.106 (0.159) 

SI-LQ quantile groups 0.674 (0.204)*** 

Initial level of wage employment −0.155 (0.015)*** −0.154 (0.014)*** 

Total effect LQ quantile groups −0.286 (0.428) 

SI-LQ quantile groups 1.833 (0.546)*** 

Initial level of wage employment −0.420 (0.031)*** −0.419 (0.029)*** 

l 0.388 (0.017)*** 0.387 (0.017)*** 

Log likelihood −20,666.887 −20,661.111 

Num. observations 3075 counties, two time periods 

Notes: The dependent variable in the two regressions is the growth rate of total wage employment in counties for two time 
periods, 2005–10 and 2010–15. 
All the regressors take the value at the first year of the two periods, that is, 2005 and 2010, to mitigate the endogeneity 
problem. 
The categorical variables, LQ and SI-LQ groups, are defined with the bootstrap quantile of the two variables. 
The direct, indirect and total effects of regressors are defined according to LeSage and Pace (2009) to quantify the effect of a 
regressor on the dependent variable in the local spatial unit, neighbouring units and their sum, respectively. 
Significance levels: *10%, **5%, ***1%. 
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In sum, both descriptive and regression analyses show that the SI-LQ outperforms the LQ as a 
measure of industry agglomeration. Next, we explore why and how the SI-LQ improves on the 
LQ, and give it an economic interpretation that highlights differences across industries in co-
location patterns based on the supply chain. 

ANALYSIS OF THE SI-LQ COMPONENTS 

We examine the relationship among the components of the SI-LQ to understand the way in 
which the SI-LQ smooths the LQ. First, we compute the Spearman correlation coefficients of 
the LQ against the SI-LQ and the other components, which is presented in Figure 3. The Spear-
man correlation coefficient is used because it is the ranking, not the values of these variables, that 

Figure 3. Spearman correlation of the components of SI-LQ with LQ. 
Note: Authors’ calculation. 
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matters for applied work.15 The correlation coefficients between LQs and SI-LQs are higher than 
0.5 for most industries (68 out of 71 industries), but only one industry (NAICS 213) has a Spear-
man coefficient higher than 0.9. This indicates that both variables provide the same general pic-
ture of industry concentration nationwide, but the SI-LQ changes the precise ordering of the 
counties due to its inclusion of more facets of agglomeration. The LQ and WLQ are positively 
correlated for all but three industries (NAICS 481, 492 and 533), indicating the existence of 
spatial spillover effects. 

The key factor that distinguishes the SI-LQ from the LQ is the ALQ. The average of the 
Spearman correlation coefficients across all industries is only 0.07, the maximum is 0.56 and 
22 industries have negative correlation coefficients. The correlation coefficients between the 
LQ and WALQ are very similar to those of the LQ-ALQ pair. 

An interesting finding is that service, retail and wholesale industries tend to have negative cor-
relation between the LQ and ALQ (similarly, WALQ), while manufacturing industries mostly 
have positive correlations. This is reasonable because manufacturing industries usually have 
more I-O linkages with local input suppliers than service industries. Indeed, when using the 
sum of all the elements in a row in the I-O matrix, A, to represent the share of intermediate 
demand in an industry’s output, we find that with the I-O matrix in 2015, the average share of 
intermediate demand of manufacturing industries is 61%, 20% higher than that of service and 
other sectors. Therefore, we hypothesize that the higher the share of intermediate demand is, 
the more correlated are the LQ and ALQ. To test this hypothesis, we regress the Spearman (rank-
ing) correlation coefficients between the LQ and the ALQ of all 71 industries in this study on the 
vector of the row sums of A. We run two types of regressions. The first is a linear regression of the 
Spearman correlation coefficients on the shares of intermediate demand, and the second is a probit 
regression with the dependent variable being an indicator variable that equals one if the correlation 
coefficient is positive and zero otherwise. Both models confirm the hypothesis with highly signifi-
cant positive coefficients. (For the results, see in the upper panel in Table 4.) 

To check the robustness of the effect of the share of intermediate demand on the LQ–ALQ 
relationship, we use quantile regression to evaluate the LQ–ALQ association along the 25th, 50th, 

Table 4. Regression of Spearman correlation coefficients and quantile regression coefficients on the 
shares of intermediate demand. 
Dependent variable: Spearman coefficient between LQ and ALQ by industry 

Linear model Probit model 

0.451 (0.159) 

Dependent variable: quantile regression coefficients of regressing LQ on ALQ 

LQ percentiles 

3.483 (1.218) 

25% 1.100 (0.397) 3.135 (1.162) 

50% 1.201 (0.387) 3.596 (1.209) 

75% 1.289 (0.379) 4.010 (1.253) 

90% 1.283 (0.380) 4.005 (1.252) 

95% 1.390 (0.383) 4.098 (1.235) 

Notes: Dependent variables are the Spearman correlation coefficient in the upper panel and the quantile regression coeffi-
cients in regression models of the LQ on the ALQ in the lower panel. The independent variable is the share of intermediate 
demand of each industry. 
Standard errors are parenthesized. 
All coefficients are significant at the 5% level. 
Number of observations is 71 industries. 
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75th, 90th and 95th percentiles of the LQ for each industry. Quantile regression is robust for a 
random variable with a heavy-tail distribution, like the LQ (Koenker & Hallock, 2001). (The 
results of the quantile regression are shown in the supplemental data online.) Upon obtaining 
the five quantile regression coefficients by industry, we regress them on the share of intermediate 
demand separately. Again, we use both linear and probit regressions. The results of these 
regressions are shown in the lower panel of Table 4. Not only do the coefficients remain positive 
but they also increase with the percentiles, implying that the LQ–ALQ association depends more 
on the I-O linkages when industries are more concentrated. This result is in line with the findings 
of Ellison et al. (2010) who use the maximum of the row and column elements of one industry in 
the I-O matrix to quantify the I-O relationship, and find a positive effect on the EG co-agglom-
eration index that measures co-location of two industries. 

The follows are implications of the relationship between the LQ and the other components for 
constructing the SI-LQ. From a perspective of designing a composite indicator, the component 
measures should not be highly correlated. Otherwise, it would double count a particular aspect 
represented by more than one components (OECD, 2008). In the case of the SI-LQ, the 
WLQ is a double counting factor for most industries, but its mild correlation with the LQ to 
some extent offsets this drawback. On the other hand, the ALQ and WALQ are compensatory 
factors to the LQ for industries with negative correlation coefficients, which is useful to alleviate 
the extreme-value problem of the LQ. From a conceptual perspective of understanding regional 
industry concentration, the varying correlation coefficients reflect the complex location patterns of 
related industries. The idea of co-agglomeration may work well for industries with strong I-O lin-
kages, such as manufacturing industries. As a solution, a varying weighting method may be needed 
to give each component a different weight when computing the SI-LQ as a geometric average, 
reflecting the expected variation across types of industries. However, the pros and cons of different 
weighting methods may further complicate discussion of the properties of the SI-LQ measures. 
For the present purpose, we use simple equal weights for each component, and leave the choice 
of a varying weighting method to future research. 

CONCLUSIONS 

In descriptive and applied regression analysis, the SI-LQ performs better than the LQ at capturing 
industry clusters and their hypothesized effects. Our analysis of the SI-LQ components reveals 
that the relationship between its components and the LQ varies across industries, suggesting 
that aggregating these components into a single index may require differential assignments of 
weights for each industry. But even with simple and intuitive equal weights, we have accomplished 
our goal of designing a measure of industry agglomeration that incorporates both industry relat-
edness and spatial correlation, and which attenuates the extreme-value problem in the LQ. We 
will post the SI-LQ and its component measures online so that users can download and try differ-
ent weighting methods based on their interests and explore more applications. 
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NOTES 

1 See Nakamura and Paul (2009) for a survey. 
2 In the following context, we consider these concepts as synonyms: regional industry concen-
tration, industry concentration, spatial concentration, industry agglomeration, industry clusters 
and spatial clusters. 
3 In the literature, the LQ is commonly computed with industry employment, but it is also com-
puted with other variables for the size or importance of an industry, such as establishment counts 
(Billings & Johnson, 2012; Delgado et al., 2016) and value-added (Mulligan & Schmidt, 2005). 
Owing to data availability at the county level and industry aggregation as well as common practice 
in the literature, we chose to use employment data to compute the LQ. 
4 Among all 71 industries, 22 industries have a diagonal element that is the maximum value of 
the column. 
5 It is an interesting counterfactual attempt to add j to LQij . This can be interpreted as the situ-
ation where even though industry i does not exist in county j, it has the potential to locate there 
because this region already possesses the localization and urbanization economies for industry i. 
6 The main reason for choosing such an industry classification is for easy calculation. Mulligan 
and Schmidt (2012) also point out that it is undesirable to discuss statistical properties of LQs at a 
very granular level of industry classification and the level of NAICS with three to four digits is 
appropriate. 
7 Rail transportation (NAICS 482) and private households (NAICS 814) are missing in both the 
CBP and BEA data sources. Therefore, the corresponding rows and columns in the direct require-
ment matrix of these two sectors are deleted. However, when calculating the direct requirement 
matrix from the use and make tables, these two sectors are preserved so that part of the IO infor-
mation of these two sectors is saved in the direct requirement matrix. 
8 A five-nearest-neighbour spatial weight is also used, yielding similar results. 
9 For the tables comparing descriptive statistics of each industry, see the supplemental data 
online. 
10 See http://www.madeinalabama.com/industries/industry/automotive/. 
11 The literature on agglomeration generally predicts growth in both employment and pro-
ductivity (Cohen, Coughlin, & Paul, 2019). In the short run, we can expect differences in agglom-
erative advantage to generate more firm births or, in a recessionary period, fewer plant closings. In 
contrast, the negative employment effect of enhanced labour productivity is likely to be a long-run 
phenomenon. Studies that explore the kind of correlations we hypothesize here, and over similar 
timespans, include Barkley, Henry, & Kim (1999), Rosenthal and Strange (2003) and Gabe 
(2003). To test the effect of agglomeration on productivity that is often represented by wage 
rates, we estimated a model with the growth rate of average wages being the dependent variable. 
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The result of this model also shows that the SI-LQ has a higher and more significant effect on the 
growth rate of average wages than the LQ. For the detailed result, see the supplemental data 
online. 
12 We also estimated spatial panel models with two-way (county and time) fixed effects. The 
results of the two-way fixed-effects model are similar to those of the county fixed-effects models, 
but the coefficients on both the LQ and SI-LQ are insignificant. Those results are available from 
the authors on request. 
13 Categorizing LQ and SI-LQ makes them comparable with the same magnitude scale. Using 
the original values does not appreciably change the regression results. The results are available 
from the authors on request. 
14 To compare the effects of both the LQ and SI-LQ directly, we estimated a model that 
includes both variables. Although not reported in Table 3 owing to the problem of multicollinear-
ity between the LQ and SI-LQ variables, the nested model yields similar results and the negative 
coefficient on the LQ is statistically significant. 
15 We also compute the Pearson correlation coefficients with similar results. 
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