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Abstract: Cities are among the best examples of complex systems. The adaptive components of a city, 
such as its people, frms, institutions, and physical structures, form intricate and often non-intuitive 
interdependencies with one another. These interdependencies can be quantifed and represented as 
links of a network that give visibility to otherwise cryptic structural elements of urban systems. Here, 
we use aspects of information theory to elucidate the interdependence network among labor skills, 
illuminating parts of the hidden economic structure of cities. Using pairwise interdependencies we 
compute an aggregate, skills-based measure of system “tightness” of a city’s labor force, capturing 
the degree of integration or internal connectedness of a city’s economy. We fnd that urban economies 
with higher tightness tend to be more productive in terms of higher GDP per capita. However, 
related work has shown that cities with higher system tightness are also more negatively affected by 
shocks. Thus, our skills-based metric may offer additional insights into a city’s resilience. Finally, 
we demonstrate how viewing the web of interdependent skills as a weighted network can lead to 
additional insights about cities and their economies. 

Keywords: urban science; regional science; cities; workforce; resilience; Panarchy; information theory; 
interdependence; co-occurrence 

1. Introduction 

Cities are the driving force behind many of humanity’s problems today [1,2]. Yet they are also a 
key source of potential solutions, and thus their welfare and sustainability are critical for humanity’s 
future [3,4]. Now home to over half of all humans on earth, cities are increasingly susceptible to the 
effects of shocks such as economic recessions, global pandemics, and natural disasters [5]. Shocks often 
damage parts of a city’s structure that may require long periods of time and substantial resources to 
repair. Thus, it is imperative that we develop a deeper understanding of urban structures, how those 
structures respond to shocks, and how policy makers might alter those structures to enhance a city’s 
resilience [6,7]. 

But what does it mean to say a city has structure? Physical attributes, such as the built environment 
and natural features, are more obvious structural components of cities. Yet many less obvious structures 
exist. For instance, local norms, customs, and laws can be viewed as part of a city’s institutional 
structure [8]. Similarly, distributions of employment across industries that remain relatively stable over 
time can be viewed as part of a city’s economic structure. It is these less obvious structural components 
of cities that we seek to understand, particularly how they respond to different shocks and how they 
contribute to the resilience of cities. 

We adopt the view that urban systems are sublime examples of complex adaptive systems. We take 
this to be more than mere metaphor, as cities are systems of adaptive entities interacting both with 
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each other and with their surrounding environment. These interactions are governed by complex 
networks that are themselves adaptive, dynamic, and interconnected with each other [9]. Cities are 
thus complex networks of networks [10,11] and advancing knowledge of how cities function and 
respond to shocks requires a deeper understanding of the numerous interconnected networks both 
within and between cities. While networks such as roadways, power conduits, and resource fow 
patterns, are easily observable, we focus here on those interaction networks that are more cryptic and 
typically not revealed through direct observation. 

We take temporally stable distributions of some city attribute to be one type of urban structure, 
focusing on economic structures and how they might respond to shocks. In addition to a city’s 
industrial structure mentioned previously, another relatively stable distribution is a city’s proportion 
of workers in each labor occupation. We take this distribution to be a key element of a city’s labor 
structure and use elements of information theory to elucidate the interaction network among a city’s 
prevalent labor skills. We further quantify global attributes of this network to understand how it 
relates to economic performance and how it may anticipate a city’s response to economic shocks. 

We implement an emerging technique that uses distributions of workers by occupation to 
understand structural elements of an urban economy [12–15]. One use of this technique has been 
to measure the level of interconnectedness within an urban economy’s workforce, revealing that 
interconnectedness, or economic tightness, is positively correlated with more severe declines in 
economic performance following a shock [16]. This result concurs with the so-called Panarchy theory 
of complex adaptive systems [17,18], which asserts that systems with higher internal connectedness are 
more efficient, but also more brittle and vulnerable to disruption. Thus, economic tightness is intimately 
linked to fragility and resilience, and its importance arises from its potential to help anticipate impacts 
of system shocks, particularly economic shocks. 

Here, we apply this methodology to distributions, not of labor occupations, but of labor skills to 
calculate a novel metric of regional economic tightness. Skills are typically viewed as more relevant 
attributes for relating labor to economic output but historically have been more difficult to quantify 
at a regional scale than occupational counts. Consequently, occupations are frequently used as a 
convenient proxy for measuring labor skills. However, researchers are now beginning to elucidate 
economic structures directly from labor skills data [19]. Adopting this framework, we compare a city’s 
skills-based economic tightness to measures of productivity, to response to an economic shock, and to 
previously used calculations of economic tightness based on occupations. 

2. Materials and Methods 

2.1. Data and Sources 

Our geographical units of analysis are the 395 metropolitan statistical areas (MSAs) of the U.S. for 
which 2018 occupational employment data are available. MSAs are defned as a core county, or counties, 
containing an urbanized area with a population of at least 50,000, plus adjacent counties having a high 
degree of social and economic integration, primarily measured as commuting ties [20]. Thus, MSAs 
are considered unifed labor markets and encompass geographical areas of high economic cohesion. 

We merge two publicly available data sets to calculate an MSA’s aggregate level of each labor skill. 
The frst is the Occupational Employment Statistics (OES) published annually by the U.S. Bureau of 
Labor Statistics [21]. OES data include an annual estimate of the number of workers in each occupation 
in each MSA. We use the May 2018 OES dataset, which was the latest version available at the time of 
our study. 

We note here one idiosyncrasy of the OES dataset. While the Bureau of Labor Statistics describes 
its OES data as covering MSAs, it actually uses an alternative geographical unit within the six New 
England states. For those states, the BLS aggregates employment not to MSAs but to an alternate 
federal statistical unit known as New England City and Town Areas, or NECTAs, which are not 
based on counties. Though MSAs and NECTAs often share the same description, e.g., greater Boston, 
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they do not encompass the same geographical areas. This variance does not materially affect our 
analysis, but it does create comparability issues with data from other sources, such as the U.S. Bureau 
of Economic Analysis, that use standard MSAs for New England data. Thus, researchers that may use 
our methodology in conjunction with other data sources should be aware of this issue. 

The second dataset is version 24.2 of the Occupational Information Network or O*Net [22]. 
O*Net decomposes U.S. occupations into several hundred attributes, representing the typical 
skills, activities, knowledge, and abilities required or used by workers in each labor occupation. 
This decomposition is done using two distinct methods. The frst decomposes occupations into 258 
so-called elements, examples of which include “Oral Comprehension”, “Management of Material 
Resources”, and “Design.” Elements are assigned a numeric value for each occupation based on the 
element’s level of importance to a worker in that occupation. A single element can have values for 
multiple dimensions of the same occupation, e.g., importance, relevance, frequency, extent, or level. 
Thus, for a given occupation, a single element, such as Oral Comprehension, may have different values 
for importance, level required, frequency of use, extent, etc. In this study, we use the level of an element, 
for which 161 elements have a value. We also performed our analysis using the importance values 
of elements but found no appreciable differences from results using level and thus, for conciseness, 
do not report on those supplemental results. 

The second O*Net method decomposes occupations into 322 individual work activities (IWAs). 
Unlike elements, IWAs are not assigned a value but are identifed as either present or absent 
in each occupation. Examples of IWAs include “Collect information about patients and clients”, 
“Monitor environmental conditions”, and “Design databases.” Hereafter, we use the term “skills” to 
refer collectively to all the various O*Net elements and IWAs. 

In our analysis, we correlate our urban structural metrics with urban economic performance, 
measured as gross domestic product (GDP) per capita. We calculate per capita GDP using 2018 
MSA-level aggregate GDP and population, both extracted from the U.S. Bureau of Economic 
Analysis [23]. 

2.2. Quantifying Interdependence 

To quantify an aggregate measure of interdependence characterizing each MSA’s economy, 
we frst transform each MSA’s distribution of occupational employment (from OES data) into a 
distribution of skills intensity. We do this by mapping OES occupation codes to their O*Net counterpart 
(see Supplemental Materials) and then, for each MSA, multiplying the number of workers in an 
occupation by the occupation-specifc value of each skill, or, in the case of IWAs, the number of workers 
whose occupation possesses the given IWA: X 

si,m = li,owo,m (1) 
o 

where w is the number of workers employed in occupation o in MSA m, and l is the quantifed level of 
skill i in occupation o. When using elements l ∈ [1, 5], and when using IWAs l ∈ {0, 1}. The resulting s is 
an aggregate measure of each skill’s presence in an MSA’s labor pool. 

We next determine whether each skill is present or absent in each MSA. While it is likely that 
every skill exists in every MSA at some nominal level, we apply a threshold to determine presence or 
absence for our purposes. We do this by applying the widely used metric of location quotient (LQ): P 

( si,m/ i si,m)LQi,m = P P P . (2)
( /m si,m m i si,m) 

In short, LQ is the ratio of the local concentration of a skill compared to the national concentration 
of that skill. Following [12], we take a skill i to be present in MSA m if LQi,m ≥ 1 and absent if LQi,m < 1. 
This results in an MSA × skill matrix of presence–absence data. 
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This matrix is then used to calculate the probability that a skill is present in a randomly selected 
MSA as well as the probability that a given pair of skills will co-occur in a random MSA. Using a 
variant of mutual information defned in [12], we next quantify the interdependence x between any 
two skills i and j as: h i 

P LQi,m > 1, LQj,m > 1 
xi, j = h i − 1, (3)

P[LQi,m0 > 1]P LQj,m00 > 1 

0where m, m , and m00 denote randomly selected MSAs. Thus, interdependence is the conditional 
probability of two skills occurring together compared to the product of their marginal probabilities. 
The result is a skill × skill matrix of interdependence values. Two skills that co-occur in MSAs more 
frequently than expected by chance will have a positive interdependence value, while two skills 
that co-occur less frequently than expected will have negative interdependence. We take this matrix 
of interdependence values to be the adjacency matrix of a complete weighted network describing 
how worker skills interact across the entire U.S. Note that xi,j = xj,i meaning the adjacency matrix is 
symmetric and thus the network is undirected. 

We then implement the methodology of [16] to calculate an aggregate measure of MSA 
interdependence, or tightness. This method dictates that we frst assign an MSA-specifc weight L to 
each MSA’s pair of present skills using the pair-wise interdependence x and weighting by the local 
proportions of each: � � 

si,m + sj,m xi, j
Li, j,m = P (4)

2 i si,m 

where i and j are skills both present in MSA m. We then average L across the total number of links in 
an MSA’s skills subnetwork to produce a skills-based tightness metric: 

pmX2
Tm = Li, j,m (5)

pm(pm − 1) 
i< j 

where i and j are both present in MSA m and pm is the total number of skills present in MSA m. Note that 
averaging the weight L across all links in an MSA’s subnetwork is equivalent to the generalized network 
density of that subnetwork [24]. 

Finally, because tightness is a dimensionless measure based on an arbitrary scale of skill level, 
we normalize tightness values as a z-score with mean = 0 and standard deviation = 1. 

3. Results and Discussion 

3.1. Skills and Interdependence 

To calculate the economic tightness of MSAs, we frst calculated an interdependence value for 
each possible pair of skills, including 12,880 element pairs and 51,681 IWA pairs. The distributions 
of values using each skill type are shown as insets in Figure 1. We take the full skill × skill matrix 
of interdependence values to be the adjacency matrix of a complete and weighted national-level 
interdependence network, in which nodes are the various labor skills and the weights are pair-wise 
interdependence values (Figure 1). Networks were created using the Kamada–Kawai algorithm, 
which produces evenly spaced nodes for relatively small networks and minimizes the number of 
edge crossings [25,26]. Because interdependence captures the degree to which skills tend to co-occur 
across MSAs, two skills that are highly interdependent tend to be near to each other in our network, 
while pairs with a low or negative interdependence tend to be farther apart. Negative interdependence 
indicates that if one skill of a pair is present in a city, the other tends not to be present. Examples of 
skill pairs with high interdependence and low interdependence are shown in Table 1. 
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Figure 1. Skill interdependence networks constructed from O*Net (A) elements and (B) individual 
work activities (IWAs). Nodes are skills and proximity between skills is a function of pairwise 
interdependencies. Non-normalized edge weights are displayed. All edges greater than zero are 
displayed. Node colors are determined using the Kamada–Kawai community detection algorithm. In 
the element-based skills network (A), yellow nodes = Sensory-physical skills, green nodes = Socio-
Cognitive: Technical skills, and red nodes = Socio-Cognitive: General skills. In the IWA-based skills 
network (B), four communities emerged (colored differently) but they form unintuitive groupings of 
skills. Insets show distribution of normalized link weights in each network. 

Because a subset of possible skills is present in each MSA, an MSA can be viewed as a 
subnetwork of the national-level interdependence network. We take this subnetwork to be the 
“location” of a given MSA within a national map. Examples of three such subnetworks, representing 
cities with low, medium, and high values of tightness, are shown in Figure 2. Among these example 
cities, as tightness increases, a city’s location shifts from the sensory-physical lobe of the skills 
network to the socio-cognitive lobe. 

Figure 1. Skill interdependence networks constructed from O*Net (A) elements and (B) individual 
work activities (IWAs). Nodes are skills and proximity between skills is a function of pairwise 
interdependencies. Non-normalized edge weights are displayed. All edges greater than zero are 
displayed. Node colors are determined using the Kamada–Kawai community detection algorithm. 
In the element-based skills network (A), yellow nodes = Sensory-physical skills, green nodes = 

Socio-Cognitive: Technical skills, and red nodes = Socio-Cognitive: General skills. In the IWA-based 
skills network (B), four communities emerged (colored differently) but they form unintuitive groupings 
of skills. Insets show distribution of normalized link weights in each network. 

Table 1. Highest and lowest ranked IWA pairs based on interdependence xi,j. 

Rank i j xi,j 

1 Study details of artistic productions Present arts or entertainment 
performances 15.5 

2 Study details of artistic productions Alter audio or video recordings 13.1 

3 Alter audio or video recordings Present arts or entertainment 
performances 11.7 

4 Consult legal materials or public records Discuss legal matters with clients, 
disputants, or legal professionals or staff 

9.9 

5 Study details of artistic productions Develop news, entertainment, 
or artistic content 9.8 

55,108 Plan events or programs Hunt animals −1.6 

55,109 Clean tools, equipment, facilities, 
or work areas Direct scientifc or technical activities −1.7 

55,110 Analyze scientifc or applied data using 
mathematical principles 

Clean tools, equipment, facilities, or 
work areas −1.7 

55,111 Hunt animals Prepare proposals or grant applications −1.8 
55,112 Evaluate scholarly work Hunt animals −1.8 

While the IWA-based network (Figure 1B) shows little global structure, the element-based network 
(Figure 1A) displays a double-lobe structure noted in a comparable study on O*Net skills [19], 
a phenomenon the authors refer to as skills polarization. However, the authors of [19] constructed their 
network’s interdependencies using the location quotient of skills across occupations, while we have 
constructed ours using an aggregate measure of skills across MSAs. Thus, this polarization exhibited 
by O*Net elements is seemingly robust to a variety of construction methodologies. 
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To uncover communities within the skills interdependence network, we remove edge with weights 
less than zero and use the Louvain community detection algorithm (LCD) with single refnement [27]. 
The LCD algorithm iteratively optimizes modularity by measuring the relative density within and 
between communities. The exclusion of edge weights lower than zero is justifed on the grounds that 
such weights represent a type of repulsion between skills. 

In the element-derived network, we fnd a similar polarization of skills with LCD identifying 
three communities (numbered in Figure 1A). Region 1 (yellow nodes) corresponds closely to what [19] 
refers to as a “sensory-physical” skills cluster, which includes elements such as Finger Dexterity, 
Spatial Orientation, and Production and Processing. Regions 2 (green nodes) and 3 (red nodes) 
correspond closely to what [19] refers to as the “socio-cognitive: technical” and “socio-cognitive: 
general” skills clusters, respectively, containing elements such as Medicine and Dentistry, Fine Arts, 
Economics and Accounting, and Technology Design. We refer to regions 2 and 3 collectively as the 
socio-cognitive lobe of our network. 

On the other hand, the LCD algorithms identifed four skill communities in the IWA network 
(Figure 1B) but they do not correspond to obvious or intuitive groupings of skills. Members of both 
element and IWA skills communities are presented in the Supplemental Materials. One possibility for 
less meaningful structure with IWAs is that, unlike elements, IWAs are not quantifed, but are simply 
present or absent in an occupation. Thus, while an IWA might be present in two occupations, it may be 
critical to one occupation and only marginally important to the other. Yet this difference in importance 
is not captured using IWAs. 

Because a subset of possible skills is present in each MSA, an MSA can be viewed as a subnetwork 
of the national-level interdependence network. We take this subnetwork to be the “location” of a 
given MSA within a national map. Examples of three such subnetworks, representing cities with 
low, medium, and high values of tightness, are shown in Figure 2. Among these example cities, 
as tightness increases, a city’s location shifts from the sensory-physical lobe of the skills network to the 
socio-cognitive lobe. 
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Figure 2. Locations of three representative metropolitan statistical areas (MSAs) within the national 
skills (elements) interdependence network. (A) Seattle is located almost exclusively within the 
socio-cognitive cluster of skills, while (B) Chicago is more balanced across lobes and (C) Indianapolis 
is largely within the sensory-physical cluster. Normalized tightness scores of each city are shown 
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3.2. MSAs and Tightness 

Interdependence values of skill pairs become the basis of an aggregate metric of economic 
integration or connectedness that we refer to as tightness T. Using both elements and IWAs as skills, 
we calculated T for each of the 395 MSAs in our study. Distributions of T using each skill type are 
shown in Figure 3. Note that the distribution of T based on elements is clearly bimodal, with a small 
cluster of MSAs having signifcantly higher tightness than the remaining MSAs. A list of MSAs having 
the highest and lowest tightness values are presented in Table 2 (where T is based on IWAs as skills). 
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Table 2. Highest and lowest ranked MSA tightness values T, using IWAs as skills. 

Rank Metropolitan Statistical Area (MSA) T * 

1 San Jose–Sunnyvale–Santa Clara, CA (41,940) 8.75 
2 California–Lexington Park, MD (15,680) 7.05 
3 San Francisco–Oakland–Berkeley, CA (41,860) 5.09 
4 Boulder, CO (14,500) 4.89 
5 Huntsville, AL (26,620) 4.84 

391 Kennewick–Richland, WA (28,420) −0.65 
392 Montgomery, AL (33,860) −0.65 
393 New Bern, NC (35,100) −0.65 
394 Bellingham, WA (13,380) −0.66 
395 Knoxville, TN (28,940) −0.68 

*—Shown as the normalized z-score of raw tightness values. 

3.3. Spatial Distribution and Autocorrelation of Tightness 

MSAs with high tightness are relatively well-dispersed spatially (Figure 4A). While MSAs 
with high tightness are prominent along U.S. coastal regions, several exist inland, such as Denver, 
Minneapolis, and Huntsville. We apply Anselin’s Local Moran’s I [28], a measure of spatial association, 
to identify statistically signifcant clusters of MSAs with both high tightness (High–High clusters) and 
low tightness (Low–Low clusters) (Figure 4B). Two other cluster types, High–Low and Low–High, 
are typically MSAs with low tightness adjacent to MSAs with high tightness. We fnd four High–High 
clusters—Olympia, San Francisco, Denver, and Washington, DC. Low–Low clusters are more numerous 
and are concentrated around the Great Lakes and in the Northern Great Plains. 
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One possible reason for these High–High clusters is that they result from spillovers of tightly 
connected economic activities to surrounding MSAs. For example, if a highly integrated MSA increases 
rents, interdependent economic activity may move to nearby MSAs that are cheaper but spatially 
proximate. This could both displace existing economic activities and increase the tightness of such 
nearby MSAs. 
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3.4. Tightness, Productivity, and Economic Shocks 

To analyze the relationship between tightness and economic productivity, we compared an MSA’s 
skills-based tightness to both its per capita GDP and per capita personal income. Results show that per 
capita GDP is signifcantly and positively correlated with tightness, using both elements (R = 0.40, 
p < 0.001) and IWAs (R = 0.44, p < 0.001). The relationship between tightness and per capita GDP remains 
positive and signifcant when controlling for MSA population (see Supplemental Material). Likewise, 
per capita personal income is signifcantly and positively correlated with element-based tightness 
(R = 0.43, p < 0.001) and IWA-based tightness (R = 0.40, p < 0.001). These results concur with previous 
work that calculated MSA tightness using the interdependence values between occupations, as opposed 
to skills [16]. Thus, both our skills-based tightness and the previously published occupation-based 
tightness are associated with higher economic productivity in general. 

However, these two measures differ in their relationship to a city’s response to a shock. While [16] 
found that occupation-based tightness is negatively correlated with a city’s change in GDP during 
the 2007–2009 recession, our study fnds that skills-based tightness (elements, 2006 data and 2006 
MSA defnitions) is positively correlated with change in GDP during the recession (R = 0.12, p < 0.05). 
Thus, occupation-based tightness and skills-based tightness measures have opposite relationships to 
an urban economy’s response to shocks. 

The fnding that cities with higher occupation-based tightness had larger percentage drops in 
productivity following a shock is consistent with the Panarchy theory of resilience, which asserts that 
as systems increase in connectedness, they become more brittle and fragile. However, the opposite 
relationship of this study’s skills-based tightness is more difficult to explain. One possible reason 
is that, following a shock, skills are more transferable to new occupations, while occupations are 
not as easily transferable to new industries. Thus, even if a city’s GDP declines after a recession, 
some workers maintain their existing jobs by utilizing their skill sets in a new capacity, but not by 
changing occupations. 

Another plausible explanation relies on the ecological concepts of niches and competitive 
exclusion [29], where occupations act as species and an urban economy as an ecosystem. Under this 
framework, occupation pairs with low interdependence share the same economic role, or niche, 
which can only be occupied by one occupation at any given time in a city. In this case, the occupations 
of this type of pair competitively exclude one another and, because they perform a similar 
economic function, are likely to have similar skill sets. Thus, even when two occupations have low 
interdependence, some of the skills they share are likely to have high interdependence. For example, 
the occupations Industrial Engineer and Petroleum Engineer have a strong negative interdependence 
(x = −0.69), meaning they rarely appear in the same city together. Yet both occupations have high 
O*Net values (>4.0 on a scale of 1 to 5) for skills like Systems Analysis, Programming, and Complex 
Problem Solving, all of which are highly interdependent with each other (x > 4.0). 

3.5. GDP vs. Resilience: A Policy Tradeoff Frontier 

While we fnd that skills-based tightness and occupation-based tightness have opposite correlations 
with GDP growth following a shock, they are nevertheless positively correlated with each other 
(2018 data, R = 0.54 for elements, R = 0.78 for IWAs, p < 0.001 for both), giving rise to a tradeoff 
between labor structures that promote resilience and those that promote higher economic productivity. 
This tradeoff can be viewed as a Pareto frontier in a plane plotting skills-based tightness against 
occupation-based tightness, as conceptualized in Figure 5A. When 2018 tightness metrics for the 
395 MSAs of our study are plotted in such a tightness plane, an approximation of a Pareto frontier 
does seemingly emerge (Figure 5B). 

To explore the role of a city’s size on its location in this plane, we group MSAs into bins based on 
log(population) and plot the centroid of each group in the same plane. The result (Figure 5C) reveals 
that as cities increase in size, they tend to move along a Pareto frontier from low skill tightness and low 
occupation tightness toward higher skill and occupation tightness. A similar trajectory is revealed 
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when cities are grouped by 5-year GDP growth (Figure 5D). These results suggest that as cities develop 
and grow, they follow a generalized trajectory becoming both more economically productive and more 
susceptible to detrimental effects of economic shocks. 

This conceptual model suggests that policy makers, to the extent that they can control a city’s 
portfolio of skills and occupations, can infuence their region’s position along this trade-off frontier, 
fostering growth in unrelated occupations if they are more concerned with resilience, or fostering 
growth in interdependent skills if they are more concerned with GDP. However, Figure 5C also suggests 
that because a city’s position is related to population size, policy makers are likely constrained in their 
ability to infuence their city’s position. 
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GDP growth (growth bins shown next to points). Tightness measures have been normalized as z-scores 
with the y-axis inverted in all cases. 

3.6. IWAs versus Elements 

As pointed out in the methods, O*Net creates two sets of data, elements and IWAs, each of which 
can be used to create a vector of attributes associated with each U.S. occupation. One goal of this study 
was to understand how results using labor decomposition might differ using these two alternatives. 
Thus, throughout this study we have applied a consistent methodology using both datasets. 
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In general, we fnd that the elements provide more meaningful results than IWAs for the purposes 
of this study. For instance, in Figure 1 elements lead to three intuitive clusters of skills and a multi-lobe 
structure of its interdependence network, while the IWA network displays no lobes and four skills 
clusters that are difficult to interpret. Similarly, in Figure 3, tightness values derived from elements 
exhibit a multimodal distribution, indicative of complex systems with multiple possible states [30], 
while the distribution derived with IWAs exhibits no such mutlimodality. 

While elements are assigned a magnitude for each occupation, IWAs are assigned as either present 
or absent on an occupation. It is likely that this quantifed magnitude leads to the richer outcomes 
found with elements. Thus, researchers seeking to decompose occupations for analytic purposes may 
wish to consider these points. 

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/22/10/1078/s1, 
Included with this pdf fle. 
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