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Abstract: The structures of regional economies play a critical role in determining both a region’s
productivity and its resilience to shocks. Here we extend previous work on the regional roles of
occupation structure and skills structure by analyzing the effect of a region’s industry structure. We
operationalize the concept of economic structure by constructing a network of interdependent
economic components. To measure the interdependence between economic components, we adopt
the view that regional economies are analogous to ecosystems, employing techniques of co-
occurrence analysis to infer interactions between industries. For each U.S. metropolitan statistical
area, we then create an aggregate measure of economic tightness, capturing the degree of integration
or interconnectedness among a region’s industries. We find that industry tightness is positively
correlated with a region’s economic productivity but negatively correlated with a region’s change
in productivity following the Great Recession. While this result echoes prior results using
occupational tightness, it differs from results using skills tightness. Thus, this study contributes to
a deeper understanding of the tradeoff between productivity and resilience, and the drivers of this
tradeoff. Whether regional policy makers are more focused on productivity or resilience, these
insights may help guide decisions regarding which industries, occupations, or skills to emphasize
in regional economic development plans. Finally, we find that regional productivity is affected by
the ubiquity of the region’s co-occurring industries and that regions with rarely co-occurring
industries are more productive.

Keywords: regional science; cities; workforce; resilience; Panarchy; information theory;
interdependence; co-occurrence

1. Introduction

Regional economic development agencies often seek to make their cities more economically
productive. Yet, simultaneously, they must address and plan for periodic shocks that disrupt regional
economies, sometimes with long lasting negative impacts. Previous research has shown that these
two goals may be opposed, meaning that regional planners face a tradeoff between making their
cities more productive or more resilient [1]. However, it remains unclear how managers can best
approach and navigate this tradeoff. What tools or models can planners employ to understand this
tradeoff and which structural elements of a regional economy most influence productivity and
resilience? Policy makers must further consider what economic interventions are both feasible and
practical. The goal of this study is to help answer these questions and to better empower regional
planners to achieve their regional development goals.

Previous studies have sought to determine the roles that both occupational structure and skill
structure play in the relative productivity and resilience of U.S. regional economies. Occupational
structure, in particular, was shown to strongly influence a region’s vulnerability to shocks [1]. Skills
structure on the other hand was shown to be more correlated with economic productivity in terms of
GDP growth [2]. Here we enrich this work by analyzing a third dimension of regional economies,
namely industrial structure, analyzing its impact on GDP growth, GDP per capita, response to shocks
and patent production.
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Prevailing conceptions of economic structure used in both academic analysis and policy
decisions typically take only limited information regarding regional economic structure into
consideration. For example, location quotients are frequently used as a standalone measure of
regional specialization [3-5]. However, location quotients only consider proportions of individual
industries relative to total employment and national shares, they do not consider inter-relations
between industries or how industry groupings co-locate in various regions. Similarly, the
Hirschmann-Herfindahl index is commonly used to measure regional diversity for industries but has
also been applied to a wide variety of other urban phenomenon such as patenting [3,6-8]. Like
location quotients, the index only examines shares and does not account for the inter-relations
between industries or the co-location of industries among various sub-national regions.

Incorporating inter-industry linkages, input-output matrices measure regional economic
structure by estimating flows between sectors within an economy [9,10]. However, while input-
output tables can be built for various geographic scales, they do not reveal how industrial linkages
locate in relation to one another among all regions in a system. For example, regional purchasing
coefficients simply identify the degree to which inputs are purchased locally, there is not typically
detailed examination of how likely it is for two industries that depend on one another to co-locate,
thus resulting in regional purchasing coefficients [11]. A more complete examination of issues
relating to the use of the input-output framework has been provided elsewhere [12].

More recently, there has been growing interest in analyzing the structure of regional economic
activity more broadly. For example, international trade data has been analyzed as a bipartite network
to capture the complexity of a region’s economy via its trade with other regions [13]. At the sub-
national level, analysis has identified that regions diversify into industries that are technological
related to preexisting industries [14,15].

Advancing the literature that examines regional structure holistically, we employ a recently
developed technique to operationalize and quantify such structures as networks of interdependent
economic components [16]. This methodology, inspired by analyses of species co-location patterns in
ecology, uses conditional probabilities to quantify the magnitude of interdependence between every
pair of industries.

We then aggregate those measures of interdependence into a single measure of economic
integration, or tightness, for each urban system. It is this tightness that has been previously examined
with regard to regional occupation and skill structures and which we now examine in relation to
industry structure. For nearly 400 U.S. Metropolitan Statistical Areas (MSAs), we determine how an
MSA'’s level of economic tightness changed between 2001 and 2018 and how it relates to economic
productivity. We then synthesize results of prior worth with current results, combining industry
tightness with occupation and skills tightness to explore the possible existence of fundamental
regional development pathways.

2. Materials and Methods

2.1 Data and sources

Industry employment data is taken from a modified version of the Quarterly Census of
Employment and Wages (QCEW) produced by the U.S. Bureau of Labor Statistics (BLS). The QCEW
data account for all workers covered by unemployment insurance and include over 95 percent of all
jobs in the U.S. This excludes unincorporated, self-employed workers. Importantly, the BLS does not
publish raw QCEW data but first suppresses data that may create privacy issues if published. Because
this suppression can substantially impact results, we use a modified QCEW dataset created by the
Indiana Business Research Center that uses various statistical techniques to estimate and include
suppressed data [17]. From this modified dataset we extract county-level industry employment data
at the 4-digit North American Industrial Classification System (NAICS) code level from the annual
version of the QCEW. Finally, we aggregate this county-level data to U.S. metropolitan statistical
areas, which are agglomerations of one or more counties representing unified labor markets [18].
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2.2 Quantifying interdependence

To calculate industrial tightness for all MSAs, we begin by calculating the commonly used
location quotient LQ for each industry in each MSA:

( eim/2i ei,m)
(Zm ei,m/Zm Zi ei,m) .

LQim = M

where is ein is employment in industry i, in MSA m. Thus, the LQ is the ratio of an industry’s share
of local employment to the industry’s share of national employment. We use LQ values to create a
presence-absence matrix, with industry i deemed present in MSA m if LQin > 1 and deemed absent
otherwise.

Using this industry presence-absence matrix, we implement the methodology of [16] to calculate
a measure of interdependence x between industries i and j as follows:

_ PLQm > LLQm>1]
= P[LQl-'ml > 1]P[LQ],m" > 1]

xi‘]’

L 2

where x is the ratio of the probability that two industries i and j are both present in a randomly
selected MSA, m, more often than they would be expected to occur individually in random cities m’
and m”. An interdependence value greater than one indicates that the two industries co-occur in
cities more often than would be expected by chance and a value less than one indicates that the two
industries co-occur less frequently than would be expected at random. The individual industry-pair
independencies result in an industry by industry symmetric matrix.

We next use this matrix and the methodology of [1] to quantify an MSA level of industry
interdependence known as tightness. We begin by weighting the sum of MSA employment in present
industries by their national level interdependence as a share of total local employment:

_ (Sim +5im)%,

L. =
vm 2% Sim

©))

Note that L is only calculated if both industries i and j are present in MSA m. Finally, we calculate the
measure of industry tightness T by averaging all L within:

Pm
2
T, =———— E L;: 4
" pm(pm - 1) < vm ( )

Thus, T captures the degree to which a city’s economy is interdependent, integrated, or
interconnected. Higher tightness indicates the presence of industry pairs that are highly
interdependent with one another. Given such reliance, growth or decline in one industry may directly
result from growth or decline in interdependent industries.

Finally, we standardize raw tightness values as z-scores such that the mean tightness value
across MSAs = 0 and standard deviation = 1.

3. Results and discussion

3.1 Industry interdependence
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For each possible pair of industries (N = 48,516) we quantified the interdependence { between

the two industries and standardized values as z-scores. Using 2018 data we find the distribution of
standardized x is positively skewed (Fig. 1), ranging from range -2.96 to 17.97 with a median = -0.12
and a 90th percentile of 0.99. Industry pairs with both highest and lowest x are presented in Table 1.

20.0%

10.0%

0.0%

N: 48,516

Range: -2.96 to 17.97
Median: -0.12

90th Percentile; 0.99

0 5

10 15

Fig. 1. Frequency distribution of 2018 standardized industry interdependence x. Although the standardized

distribution of x is slightly positively skewed with a range of -2.96 to 17.97.

Table 1. Highest and lowest standardized interdependence x among U.S. industry pairs (Z-Score)

Rank Industry 1 Industry 2 X
1 Motion picture and video industries (5121) Agents and managers for public figures (7114) 17.97
2 Monetary authorities - central bank (5211) Securities and commodity contracts brokerage (5231) 13.87
3 Oil and gas extraction (2111) Support activities for mining (2131) 13.78
4 Securities and commodity contracts brokerage (5231) Other financial investment activities (5239) 13.25
5 Scheduled air transportation (4811) Securities and commodity contracts brokerage (5231) 12.95
48,512 Cut and sew apparel manufacturing (3152) Space research and technology (9271) -2.96
48,513 Other support services (5619) Space research and technology (9271) -2.96
48,514  Apparel knitting mills (3151) Space research and technology (9271) -2.96
48,515  Textile furnishings mills (3141) Space research and technology (9271) -2.96
48,516  Scenic and sightseeing transportation, other (4879) Securities and commodity exchanges (5232) -2.96

We take this interdependence matrix to be the adjacency matrix of a weighted network. In this

case, nodes in the network are the 312 industries and edge values are the normalized interdependence
values calculated in equation 2. We reduce the network by removing edge weights less than zero,
apply the Louvain community detection (LCD), and visualize the networks using the Kamada-
Kawaii algorithm in the network software Pajek [19].

Unlike similar networks created using labor skills [2,20], the network built with industries is not
characterized by two polarized components or lobes. The LCD algorithm does, however, reveal two

communities when using a resolution parameter of 0.5 (SOM Fig. S2). The first community is

composed primarily of manufacturing and trade, transportation, and utilities, which account for 88
of the 103 nodes (85.4%) in the community (SOM Table S2). The second community is composed
primarily of the remainder of industries. Manufacturing, trade, transportation, and utilities industries
combined account for only 76 of the 209 nodes (36.4%) in the second community.
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156  MSA-level industry tightness

157 Using industry-pair interdependencies we calculate an aggregate economic tightness metric of
158  each MSA and standardize as z-scores. We find the distribution of T values is more highly-skewed
159  than the underlying interdependence scores, ranging from -0.85 to 10.3, with median = -0.28 (Fig. 2).
160  MSAs with the highest and lowest standardized tightness values for 2018 are presented in Table 2.
161

N: 384

Range: -0.84 to 10.35
Median: -0.27

90th Percentile: 0.90

20.0%

10.0%

0.0%
162 o 2 4 6 8 10

163 Figure 2. Tightness z-score histogram (2018). The distribution is more positively skewed with a maximum

164  value of 10.35

165 Table 2. Highest and lowest MSAs by 2018 standardized tightness T
Rank MSA T (Z-Score)
1 San Jose-Sunnyvale-Santa Clara, CA 10.35
2 Midland, TX 6.88
3 Salinas, CA 5.26
4 Washington-Arlington-Alexandria, DC-VA-MD-WV 4.15
5 San Francisco-Oakland-Berkeley, CA 3.47
380 Elmira, NY -0.76
381 Kingston, NY -0.77
382 Manhattan, KS -0.79
383 Killeen-Temple, TX -0.81
384 Bay City, MI -0.84
166
167

168 Spatial distribution of T

169 Analyzing the spatial distribution of T across MSAs (Fig. 3) we find several statistically
170  significant clusters of MSAs with high tightness values that are not evenly distributed (Fig. 4). Using
171  a spatial weights matrix of an MSA’s 4 nearest neighbors for a local Moran’s I reveals clusters of
172 MSAs with high T located primarily in California. Results using other neighborhood definitions
173 (either 2 or 3 nearest neighbors) are qualitatively similar, with additional high industrial tightness
174 clusters centered on Washington, D.C. and Denver among others appearing (not shown).
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Figure 3. MSAs by tightness z-score. Most regions in the US have an MSA with high tightness.
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Figure 4. LISA clusters MSA tightness z-score. While most regions have MSAs with high tightness,
California has the largest cluster of MSAs with high industrial tightness.

Tightness over time

The distribution of T from 2001 to 2018 is displayed in Figure 5. The median normalized
tightness varied from 0.25 and 0.35 over the period examined, approximately 10 percent of the
normalized standard deviation of 1.0. The 95t percentile of the normalized tightness varied between
1.5 and 2.0 from 2001 to 2018, 50 percent of one standard deviation. The most noticeable variation
occurred at the maximum, which was driven primarily by the San Francisco MSA, which had the
highest tightness value for 12 of the 18 years 2001 to 2018.
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Figure 5. Industrial tightness dispersion: 2001-2018. The overall distribution of MSA industrial
tightness remained stable from 2001 to 2018.

From a policy perspective, it is notable that the tightness of individual MSAs, particularly when
ranked against all other MSAs, changes over time. For example, the rank of Hickory-Lenoir-
Morganton, NC, declined from rank 8t in 2003 to 77t in 2013, while Midland, TX climbed from 22nd®
in 2005 to 1stin 2014 (SOM Fig. S3). The perpetual reordering of MSAs within the overall distribution
of T suggests that it may be possible for policymakers influence regional tightness.

Relationship Between Tightness and Metrics of Urban Performance

Industrial tightness correlates with multiple MSA characteristics. Industry tightness is
significantly and positively correlated with GDP per capita (adj R? = 0.43, p < 0.001) (

200
Adj. R-Squared: 0.4202 [ ]

p-value: 0.000

175

150

GDP Per Capita 2018
(Thousands)
=] e
(=] (4]

-~
w

o
o

25

6 8 10

4
Industry Tightness
(Z-Score)

Figure 6). A one standard deviation increase in industrial tightness is correlated with an increase
in GDP per capita of $9,971. Industry tightness is also significantly and positively correlated with
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To examine the relationship between industry tightness and economic vulnerability, we use data
covering the period of the 2007-2009 global recession. We regress the percent change in MSA GDP
per capita from 2006 to 2009 on 2006 MSA tightness (see SOM). Unlike occupational tightness [1],
we find no statistically significant correlation between industry tightness and change in an MSA’s
per capita GDP during the recession. Two additional variables examined are the logarithm of MSA
population and patents per worker (Table 3). While MSA industrial tightness is significantly
correlated with both population and patents per worker, both also have low explanatory power.

200
Adj. R-Squared: 0.4202 L4
p-value: 0.000

175

150

GDP Per Capita 2018
(Thousands)

75

25

0 2 4 -] 8 10
Industry Tightness
(Z-Score)

Figure 6. Industrial tightness vs. GDP per capita (thousands of $). MSA industrial tightness is
positively correlated with regional economic productivity.

Table 3. Tightness versus metrics of urban performance

Single Variable Regression of Industrial Tightness versus:
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GDP Per Patents Per

GDP Per Capit L
Capita er-aprta o8 1,000 Workers
Change 2015 - 2018* Population

(Thousands) (2015)

Const. 47.97 0.04 -3.29 0.68
Beta 9.97%** 0.014*** 0.26*** 0.41%**
(SE) (0.597) (0.002) (0.045) (0.056)
Adj. R2 0.42 0.094 0.079 0.122

N 384 384 384 375

Note: Patent data are sourced from the USPTO

*** significant at the 1% level.

tDependent tightness data are 2015 Industrial Tightness, 2015 OMB MSA definitions.

The close positive correlation between industrial tightness and productivity raises natural
questions as to the source of the correlation. Regarding time dynamics, there are at least two plausible
explanations of how the correlation between MSA industrial tightness and GDP per capita could
developed within any individual MSA. First, productivity could lead to greater industrial tightness
as greater competition for resources results in an exclusionary process that drives non-related, less
productive, industries out of the regional market either through relocation or closure. Such a dynamic
process has been identified in regional economies resulting from firm formation [21]. Second,
industrial tightness could induce all economic activity to become more productive, without
exclusionary processes, as the complex interactions of the tightly bound economy find additional
productive uses for existing industries. If complex inter-industry linkages induce regional economic
productivity without an exclusionary process, the concern among ecologists that strong asymmetric
relationships resulting in one species excluding another, and thus the relationship going
unmeasured, would be diminished for regional economic analysis [22]. Examining the exclusionary
processes that may be at work seem a fruitful area of future research.

There are additional considerations that may play a role in the strong correlation between
industrial tightness and productivity. For example, the overall correlation results from a small
number of rarely co-occurring industry-pairs. The overall correlation could also result from the
diversity of co-occurring industry pairs. While there are numerous plausible explanations, we
analyze the possibility that the correlation is driven by rarely co-occurring industry-pairs.

Rareness of industry co-occurrence could be quantified several ways. For instance, the individual
occurrences of two industries could be independently rare, making a co-occurrence of both industries
highly unlikely. It could also be the case that two industries have a low x, meaning that while they
both may occur independently in many MSAs, they rarely co-occur. A parsimonious measure of
industry-pair rarity is a simple count of the number of MSAs in which industry pair i,j co-occurs.

More formally:
Cij = Z Pijm ®)
m

where

1ifLQ,,, >1,  LQ, >1

0 Elsewhere

Piim = | (©)

We calculate c for each of the 48,451 unique industry pairs that co-occur at least once (65 industry
pairs never co-occur). The distribution of c is highly skewed, with a median of 26, an average of 31.9
and a maximum of 255 (Fig. 7).
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Figure 7. Histogram of industry-pair co-occurrences. The distribution of the number of co-occurrences is

highly skewed, the median number of co-occurrences is 26 MSAs.

Industry-pairs with high interdependence values co-occur more rarely than industry-pairs with
lower interdependence values (SOM Fig. S4). In order to have a high inter-dependence values, two
industries have to both be specialized in only a few places and co-occur in more places than would
be expected by random chance. If two industries co-occur far more frequently than would be
anticipated by random chance, it is likely the case then that they are more productive together than
they are separately, thus capturing the essence of the measure, and resulting in the tight correlation
between tightness and economic productivity.

To determine how ¢ varies with city characteristics, we first plot cij against the average MSA
population where pijn = 1 (Fig. 8). Given that the data are not normally distributed and
heteroskedastic, we report the mean of the average city-size for each c. Rarely occurring industry-
pairs are more likely to co-occur in larger MSAs. The mean average city-size in which an industry-
pair co-occurs rises from 2.38 million when ¢ =1 to 2.6 million when ¢ = 5. From this peak the mean
average city-size in which an industry-pair co-occurs falls to 1.06 million when ¢ = 30.

= mean

Average MSA Population (Log)
by Industry-Pair Co-Occurrence

1] 50 100 150 200 250

o
(Industry-Pair Co-Occurrences)

Figure 8. Average MSA population (log) vs. number of industry-pair co-occurrences. Industries that rarely

co-occur typically co-occur in larger MSAs.

10 of 14



276
277
278
279
280
281

282
283
284
285
286
287
288
289
290
291
292
293
294
295

296
297

298

Plotting the average GDP per capita where pi;j» =1 against cij reveals a similar relationship (Fig.
9). Rarely occurring industry-pairs are more likely to occur in MSAs with higher GDP per capita.
The mean average GDP per capita of MSAs in which an industry-pair co-occurs declines from $58,664
when ¢ =1 to $49,972 when ¢ = the median of 26. As ¢ increases, the mean average GDP per capita
across MSAs asymptotically approaches approximately $43,000.
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Figure 9. Average MSA per capita GDP vs. number of industry-pair co-occurrences. Industries that rarely co-

occur typically co-occur in more productive MSAs.

Given that the mean average per capita GDP declines as ¢ increases suggests that cities with
rarely co-occurring industry-pairs have higher per capita economic output. To examine this further,
we compare the average c for industry-pairs that co-occur in an MSA to the MSA’s per capita GDP
(Fig. 10). The correlation between the average c of industry-pairs that co-occur within the MSA and
the MSA's per capita GDP is negative and significant (adj R2=0.27, p <0.001). Regions with industries
that rarely co-occur are more productive than regions with more ubiquitously co-occurring
industries, providing further evidence that the co-occurrence measure underlying the MSA-level
tightness measure captures inter-industry productivity benefits not captured when using traditional
tools, such as location quotients, alone.

200
Adj. R-Squared: 02752 .

p-value: 0.000

175
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Figure 10. MSA industry-pairs average co-occurrence vs. per capita GDP. MSAs with rarer industry pairs are

more productive.
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Industries, occupations, and skills — synthesizing past work on economic structures

Finally, we synthesize the results of this study, using tightness based on industries, with
previous work using tightness based on occupations [1] and on skills [2]. Comparing industrial
tightness to both occupational tightness and skills tightness reveals that the industrial tightness is
linearly correlated with occupational tightness while the relationship with skills tightness is non-
linear (Error! Reference source not found. SOM Figs. S6-S8). The linear correlation between
industrial tightness and occupational tightness is positive and significant (adj. R? = 0.65, p < 0.001).
Thus, while industrial and occupational tightness appear to be closely related, skills tightness stands
out as distinct from the other two measures.

Table 4. Industry tightness versus occupation and skills tightness

Single Variable Regression of Industrial Tightness (Z-Score) vs.:

Occupational Tightness Skills Tightness
Const. 0.01 0.04
Beta 0.8171%** 0.307***
(SE) (0.031) (0.048)
Adj. R2 0.646 0.094
N 365 365

* significant at the 1% level.

Integrating this study with previous work, a summary of the various metrics of tightness and
their relationships with economic indicators is presented in Table 5. Overall, we find that all measures
of tightness are positively and significantly correlated with economic performance in the absence of
shocks. However, following a shock both higher occupation and industry tightness are correlated
with higher percentage drops in economic performance. On the other hand, higher skills tightness is
correlated with increased economic performance following a shock.

Table 5. Correlation between various measures of economic tightness and economic performance metrics

Tightness based on:
Occupations Skills Industries
Per capita GDP + + +
Per capita personal income + + +
Change in per capita GDP, following shock - + -
Change in per capita personal income, following shock - n.s. -

n.s. = not significant

The implications of this summary for policy makers is that there exists a tradeoff between
economic productivity and economic resilience. Attracting industries and jobs that increase tightness
may enhance economic efficiency but at the cost of resilience in the event of a shock. However, to the
extent that policy makers can promote higher skills tightness without increasing occupational or
industrial tightness may simultaneously enhance both productivity and resilience. However, it
remains unclear what policy options might influence only specific components of a regional economy
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and further research is required to determine realistic policy options that best empower policy
makers to navigate the productivity-resilience tradeoff.
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The interdependence of industry pairs is positively skewed (Table 1). Normalized
interdependence values range from -2.96 to 17.97 with a median of -0.12. While the
interdependence values are positively skewed, they are not as positively skewed as the more
aggregate tightness value as the MSA level.

Table S1. Summary statistics of 2018 industry interdependence X .

n 48,516

mean 0.000

std 1.000

min -2.964

25th Percentile -0.517
50th Percentile -0.117
75th Percentile 0.334
max 17.97

To examine industrial clustering in a network with nodes defined as industries and edges defined
as the interdependence value, x, based on co-occurrence, nodes in Figure S1 are colored by the
BLS Super-Sector scheme in Table S2.

Table S2. BLS Super-Sector Definitions and Color Scheme.

Super Sector NAICS Color
Natural Resources and Mining 1133,21 Light Green
Construction 23 Red
Manufacturing 31,32,33 Black
Trade, Transportation, and Utilities 42,44 45.48,49,22 Orange
Information 51 Turquoise
Financial Activities 52,53 Green
Professional and Business Services 54,55,56 Blue
Education and Health Services 61,62 Purple
Leisure and Hospitality 71,72 White
Other Services 81 Maroon
Government* 91,92,93 Yellow
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Unlike the similar network based on inter-dependence of skills, the network based on industrial
employment does not produce polarized components (Figure S1). While reducing the network
by dropping negative interdependence values reveals a sparser network, the network remains
dense with no components being visually apparent. In visual displays, however, the
manufacturing sector and the trade, transportation, and utilities sectors are typically clusters. The
Louvain community detection algorithm detects this cluster, placing the majority of industries in
these super-sectors into a community highlighted in blue in Figure S2.

Figure S1. Industry Interdependence Network — BLS Super-Sector Colors
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Figure S21. Industry Interdependence Network — Louvain Communities (Community 1 in Blue, Community
2 in Yellow)

Examining the industries in the communities detected by the Louvain community detection algorithm
confirms that the majority of the first community is comprised of industries in the manufacturing super-
sector and the trade, transportation, and utilizes super-sector, 88 of 103 industries.

Table S3. Louvain Community Composition

Industry Louva‘in Louva‘in
Community - 1 Community - 2
Manufacturing 64 22
Trade, Transportation, and Utilities 24 54
Other 15 133
Total 103 209

The distribution of MSA industrial tightness is highly skewed. Normalized industrial tightness
ranges from -0.81 to 10.35. The distribution of the tightness scores are much more highly skewed
than the underlying interdependence scores for industry pairs.

Table S4. Summary Stats Tightness Z-Scores

n 381

mean 0.000

std 1.001

min -0.841

25th Percentile -0.520
50th Percentile -0.273
75th Percentile 0.126
max 10.352
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Figure S3 shows the rank of two MSAs, Hickory-Lenoir-Morganton, NC and Midland, TX. While
both MSAs were in the top 20 in 2001, Hickory-Lenoir-Morganton, NC declined in rank
substantially from being ranked 9th in 2004 to being ranked 77t in 2013 before rebounding to 34t
in 2016. Midland, TX in contrast, remained highly ranked throughout the study period, ranking
1¢tin 2014. These two experiences were chosen to illustrate the fact that notable change can occur,
provide policymakers an actionable target.
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Figure S3. Tightness Rank of Selected MSAs

Most industry-pairs that commonly co-occur, have a low inter-dependence value (Figure S4).
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Figure S4. Industrial Tightness (2006 Z-Score) and GDP Per Capita Change (2006-2009)

Industrial tightness was negatively correlated with the economic shock caused by the great
recession. MSA tightness in 2006 is shown against GDP Per Capita percent change from 2006 to
2009 in figure S5. The correlation is negative and significant.
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Figure SS. Industrial Tightness (2006 Z-Score) and GDP Per Capita Change (2006-2009)

Compared with previous tightness measurements, industrial tightness is more directly correlated with
occupational tightness (Figure S6). Occupational tightness and industrial tightness follow a close
correlation (Figure S7) while skills tightness diverges (Figure S8), as with the relationship previously found

between skills tightness and occupational tightness [2].
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Figure S6. Industry, skills, and occupational tightness (see also SOM Figs. S5 and S
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Figure S7. Industry Tightness and Occupational Tightness

Skills
(Level Z-Score)

R-Squated: 0.0969
p-value: 0.000

Industry Tightness
(Z-Score)

Figure S8. Industry Tightness and Skills Tightness

Table S5. Simple correlations between various measures of Tightness and economic indicators

Occupations Skills (elements) Industries
Per capita GDP 0.56 0.40 0.65
Per capita personal income 0.41 0.43 0.54
Per capita GDP, following shock --0.11 0.1 --0.14
Per capita person income, following shock --0.35 -0.08** --0.31

** - not significant




